Skip to main content
Log in

Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we present an extension of dissipative particle dynamics method in order to study the mixed electroosmotic/pressure-driven micro- or nano-flows. This method is based on the Poisson–Boltzmann equation and has a great potential to resolve the electric double layer (EDL). Hence, apart from studying the bulk flow, it also provides a strong capability in order to resolve the complex phenomena occur inside the EDL. We utilize the proposed method to study the pure electroosmotic and also the mixed electroosmotic/pressure-driven flow through the straight micro-/nano-channels. The obtained results are in good agreement with the available analytical solutions. Furthermore, we study the electroosmotic flow and motion of DNA molecules through a T-shaped micro-channel. We show that neglecting the EDL and utilizing the slip wall boundary condition model can result in crucially misleading hydrodynamic characteristics if the EDL is comparable to the width of the channel. Finally, we utilize the presented method in order to study the complex flow patterns, which are created due to the heterogeneous distribution of the electric potential of the walls. These complex flow patterns usually are utilized in order to enhance the efficiency of mixing process in micro-/nano-length scales. In addition, we show that they can also be utilized effectively in order to separate the different macro-molecules such as polymers, DNA molecules and so on, according to their length of chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aboelkassem Y (2011) Numerical simulation of electroosmotic complex flow patterns in a microchannel. Comput Fluids 52:104

    Article  MATH  MathSciNet  Google Scholar 

  • Ajdari A (1995) Electro-osmosis on inhomogeneously charged surfaces. Phys Rev Lett 75:755

    Article  Google Scholar 

  • Ajdari A (1996) Generation of transverse fluid currents and forces by an electric field: electro-osmosis on charge-modulated and undulated surfaces. Phys Rev E 53:4996

    Article  Google Scholar 

  • Arulanandam S, Li D (2000) Liquid transport in rectangular microchannels by electroosmotic pumping. Coll Surf A 161:89

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Ma Y, Li N (2010) Electroosmotic flow in a nanofluidic channel coated with neutral polymers. Microfluid Nanofluid 9:1051

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Yang Y, Li N (2011) Controlling electroosmotic flow by polymer coating: a dissipative particle dynamics study. Microfluid Nanofluid 10:977

    Article  Google Scholar 

  • Cao Q, Zuo C, Li L, Zhang Y, Yan G (2012) Electro-osmotic flow in nanochannels with voltage-controlled polyelectrolyte brushes: Dependence on grafting density and normal electric field. J Poly Sci Part B Poly Phys 50:805

    Article  Google Scholar 

  • Chai Z, Shi B (2007) Simulation of electro-osmotic flow in microchannel with lattice Boltzmann method. Phys Lett A 364:183

    Article  MATH  Google Scholar 

  • Duong-Hong D, Han J, Wang JS, Hadjiconstantinou NG, Chen YZ, Liu GR (2008) Realistic simulations of combined DNA electrophoretic flow and EOF in nano-fluidic devices. Electrophoresis 29:4880

    Article  Google Scholar 

  • Duong-Hong D, Wang JS, Liu GR, Chen YZ, Han J, Hadjiconstantinou NG (2008) Dissipative particle dynamics simulations of electroosmotic flow in nano-fluidic devices. Microfluid Nanofluid 4:219

    Article  Google Scholar 

  • Dutta P, Beskok A (2001) Analytical solution of combined electroosmotic/pressure driven flows in two-dimensional straight channel. Anal Chem 73:1979

    Article  Google Scholar 

  • Dutta P, Beskok A, Warburton TC (2002) Numerical simulation of mixed electroosmotic/pressure driven microflows. Numer Heat Transf 41:131

    Article  Google Scholar 

  • Espanol P, Warren P (1995) Statistical mechanics of dissipative particle dynamics. Europhys Lett 30:191

    Article  Google Scholar 

  • Ghosal S (2004) Fluid mechanics of electroosmotic flow and its effect on band broadening in capillary electrophoresis. Electrophoresis 25:214

    Article  Google Scholar 

  • Groot RD (2003) Electrostatic interactions in dissipative particle dynamics simulation of polyelectrolytes and anionic surfactants. J Chem Phys 118:11,265

    Article  Google Scholar 

  • Groot RD, Warren PB (1997) Dissipative particle dynamics: bridging the gap between atomic and mesoscopic simulation. J Chem Phys 107(11):4423

    Article  Google Scholar 

  • Hadigol M, Nosrati R, Nourbakhsh A, Raisee M (2011) Numerical study of electroosmotic micromixing of non-newtonian fluids. J Nonnewton Fluid Mech 166:965

    Article  MATH  Google Scholar 

  • Han J, Craighead H (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288(5468):1026

    Article  Google Scholar 

  • Han J, Turner S, Craighead H (1999) Entropic trapping and escape of long DNA molecules at submicron size constriction. Phys Rev Lett 83(8):1688

    Article  Google Scholar 

  • Hickey OA, Harden JL, Slater GW (2009) Molecular dynamics simulations of optimal dynamic uncharged polymer coatings for quenching electro-osmotic flow. Phys Rev Lett 102:108,304

    Article  Google Scholar 

  • Hickey OA, Harden JL, Slater GW (2012) Computer simulations of time-dependent suppression of EOF by polymer coatings. Microfluid Nanofluid 13:91

    Article  Google Scholar 

  • Hickey OA, Holm C, Harden JL, Slater GW (2011) Influence of charged polymer coatings on electro-osmotic flow: Molecular dynamics simulations. Macromolecules 44:9455

    Article  Google Scholar 

  • Horiuchi K, Dutta P, Richards CD (2007) Experiment and simulation of mixed flows in a trapezoidal microchannel. Microfluid Nanofluid 3:347

    Article  Google Scholar 

  • Ibergay C, Malfreyt P, Tildesley DJ (2010) Mesoscale modeling of polyelectrolyte brushes with salt. J Phys Chem B 114:7274

    Article  Google Scholar 

  • Jiang W, Huang J, Wang Y, Laradji M (2007) Hydrodynamic interaction in polymer solutions simulated with dissipative particle dynamics. J Chem Phys 126:044,901

    Article  Google Scholar 

  • Karniadakis G, Beskok A, Aluru N (2005) Microflows and nanoflows fundamentals and simulation. Springer Science+Business Media, Inc., Berlin

    MATH  Google Scholar 

  • Liu X, Erickson D, Li D, Krull UJ (2004) Cationic polymer coatings for design of electroosmotic flow and control of DNA adsorption. Anal Chim Acta 507:55

    Article  Google Scholar 

  • Long D, Dobrynin AV, Rubinstein M, Ajdari A (1998) Electrophoresis of polyampholytes. J Chem Phys 108:1234

    Article  Google Scholar 

  • McMahon G (2007) Analytical instrumentation: a guide to laboratory, portable and miniaturized instruments. Wiley, New Jersey

    Book  Google Scholar 

  • Mehboudi A, Saidi MS (2011) A systematic method for the complex walls no-slip boundary condition modeling in dissipative particle dynamics. Scientia Iranica B 18:1253

    Article  Google Scholar 

  • Mehboudi A, Saidi MS (2013) Physically-based wall boundary condition for dissipative particle dynamics. Microfluid Nanofluidics. doi: 10.1007/s10404-013-1285-7

  • Mishchuk NA, Heldal T, Volden T, Auerswald J, Knapp H (2011) Microfluidic pump based on the phenomenon of electroosmosis of the second kind. Microfluid Nanofluidics 11:675

    Article  Google Scholar 

  • Moeendarbary E, Ng T, Pan H, Lam K (2010) Migration of DNA molecules through entropic trap arrays: a dissipative particle dynamics study. Microfluid Nanofluidics 8:243

    Article  Google Scholar 

  • Pan H, Ng T, Li H, Moeendarbary E (2010) Dissipative particle dynamics simulation of entropic trapping for DNA separation. Sens Actuat A Phys 157:328

    Article  Google Scholar 

  • Patankar NA, Hu HH (1998) Numerical simulation of electroosmotic flow. Anal Chem 70:1870

    Article  Google Scholar 

  • Pennathur S, Santiago JG (2005) Electrokinetic transport in nanochannels. 2. experiments. Anal Chem 77:6782

    Article  Google Scholar 

  • Qiao R (2006) Control of electroosmotic flow by polymer coating: Effects of the electrical double layer. Langmuir 22:7096

    Article  Google Scholar 

  • Qiao R, He P (2007) Modulation of electroosmotic flow by neutral polymers. Langmuir 23:5810

    Article  Google Scholar 

  • Smiatek J, Schmid F (2011) Mesoscopic simulations of electroosmotic flow and electrophoresis in nanochannels. Comput Phys Commun 182:1941

    Article  Google Scholar 

  • Smiatek J, Sega M, Holm C, Schiller UD, Schmid F (2009) Mesoscopic simulations of the counterion-induced electro-osmotic flow: a comparative study. J Chem Phys 130:244,702

    Article  Google Scholar 

  • Streek M, Schmid F, Duong TT, Ros A (2004) Mechanisms of DNA separation in entropic trap arrays: a brownian dynamics simulation. J Biotechnol 112:79

    Article  Google Scholar 

  • Symeonidis V, Karniadakis GE, Caswell B (2005) Dissipative particle dynamics simulations of polymer chains: Scaling laws and shearing response compared to DNA experiments. Phys Rev Lett 95:076,001

    Article  Google Scholar 

  • Tessier F, Slater G (2005) Control and quenching of electroosmotic flow with end-grafted polymer chains. Macromolecules 38:6752

    Article  Google Scholar 

  • Tessier F, Slater G (2006) Modulation of electroosmotic flow strength with end-grafted polymer chains. Macromolecules 39:1250

    Article  Google Scholar 

  • Viovy JL (2000) Electrophoresis of DNA and other polyelectrolytes: physical mechanisms. Rev Mod Phys 73(3):813

    Article  Google Scholar 

  • Zhang Z, Zuo C, Cao Q, Ma Y, Chen S (2012) Modulation of electroosmotic flow using polyelectrolyte brushes: A molecular dynamics study. Macromol Theory Simul 21:145

    Article  Google Scholar 

  • Zhou T, Liu AL, He FY, Xia XH (2006) Time-dependent starting profile of velocity upon application of external electrical potential in electroosmotic driven microchannels. Coll Surf A Physicochem Eng Aspects 277:136

    Article  Google Scholar 

  • Zhu J, Canter RC, Keten G, Vedantam P, Tzeng TRJ, Xuan X (2011) Continuous-flow particle and cell separations in a serpentine microchannel via curvature-induced dielectrophoresis. Microfluid Nanofluid 11:743

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aryan Mehboudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mehboudi, A., Noruzitabar, M. & Mehboudi, M. Simulation of mixed electroosmotic/pressure-driven flows by utilizing dissipative particle dynamics. Microfluid Nanofluid 17, 199–215 (2014). https://doi.org/10.1007/s10404-013-1287-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10404-013-1287-5

Keywords

Navigation